home *** CD-ROM | disk | FTP | other *** search
/ Interactive Algebra & Tri…f Guided Study Companion / Interactive Algebra and Trigonometry - A Self-Guided Study Companion.iso / tutor / chap_3 / 3-index.tut < prev    next >
Unknown  |  1996-05-22  |  2.1 KB

open in: MacOS 8.1     |     Win98     |     DOS

view JSON data     |     view as text


This file was not able to be converted.
This format is not currently supported by dexvert.

ConfidenceProgramDetectionMatch TypeSupport
1% dexvert Eclipse Tutorial (other/eclipseTutorial) ext Unsupported
1% dexvert JuggleKrazy Tutorial (other/juggleKrazyTutorial) ext Unsupported
100% file data default
100% gt2 Kopftext: 'TUTOR 06G' default (weak)



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | 47 08 00 00 19 00 00 00 |TUTOR 06|G.......|
|00000010| 47 6c 6f 73 73 61 72 79 | 20 66 6f 72 20 43 68 61 |Glossary| for Cha|
|00000020| 70 74 65 72 20 33 0d 0b | 00 10 33 2d 34 2d 31 0e |pter 3..|..3-4-1.|
|00000030| 73 33 2d 34 2d 34 0e 41 | 64 64 69 74 69 6f 6e 61 |s3-4-4.A|dditiona|
|00000040| 6c 20 48 69 6e 74 73 20 | 66 6f 72 20 46 69 6e 64 |l Hints |for Find|
|00000050| 69 6e 67 20 5a 65 72 6f | 73 20 6f 66 20 50 6f 6c |ing Zero|s of Pol|
|00000060| 79 6e 6f 6d 69 61 6c 73 | 0f 0d 0a 00 10 33 2d 31 |ynomials|.....3-1|
|00000070| 2d 31 0e 73 33 2d 31 2d | 33 0e 41 78 69 73 20 6f |-1.s3-1-|3.Axis o|
|00000080| 66 20 61 20 50 61 72 61 | 62 6f 6c 61 0f 0d 0a 00 |f a Para|bola....|
|00000090| 10 33 2d 31 2d 31 0e 73 | 33 2d 31 2d 33 0e 41 78 |.3-1-1.s|3-1-3.Ax|
|000000a0| 69 73 20 6f 66 20 53 79 | 6d 6d 65 74 72 79 20 6f |is of Sy|mmetry o|
|000000b0| 66 20 61 20 50 61 72 61 | 62 6f 6c 61 0f 0d 0a 00 |f a Para|bola....|
|000000c0| 10 33 2d 35 2d 31 0e 73 | 33 2d 35 2d 33 0e 43 6f |.3-5-1.s|3-5-3.Co|
|000000d0| 6d 70 6c 65 78 20 5a 65 | 72 6f 73 20 4f 63 63 75 |mplex Ze|ros Occu|
|000000e0| 72 20 69 6e 20 43 6f 6e | 6a 75 67 61 74 65 20 50 |r in Con|jugate P|
|000000f0| 61 69 72 73 0f 0d 0a 00 | 10 33 2d 31 2d 31 0e 73 |airs....|.3-1-1.s|
|00000100| 33 2d 31 2d 31 0e 43 6f | 6e 73 74 61 6e 74 20 46 |3-1-1.Co|nstant F|
|00000110| 75 6e 63 74 69 6f 6e 0f | 0d 0a 00 10 33 2d 36 2d |unction.|....3-6-|
|00000120| 31 0e 73 33 2d 36 2d 31 | 0e 43 6f 6e 73 74 61 6e |1.s3-6-1|.Constan|
|00000130| 74 20 6f 66 20 50 72 6f | 70 6f 72 74 69 6f 6e 61 |t of Pro|portiona|
|00000140| 6c 69 74 79 0f 0d 0a 00 | 10 33 2d 32 2d 31 0e 73 |lity....|.3-2-1.s|
|00000150| 33 2d 32 2d 31 0e 43 6f | 6e 74 69 6e 75 6f 75 73 |3-2-1.Co|ntinuous|
|00000160| 0f 0d 0a 00 10 33 2d 34 | 2d 31 0e 73 33 2d 34 2d |.....3-4|-1.s3-4-|
|00000170| 31 0e 44 65 73 63 61 72 | 74 65 73 27 73 20 52 75 |1.Descar|tes's Ru|
|00000180| 6c 65 20 6f 66 20 53 69 | 67 6e 73 0f 0d 0a 00 10 |le of Si|gns.....|
|00000190| 33 2d 36 2d 31 0e 73 33 | 2d 36 2d 31 0e 44 69 72 |3-6-1.s3|-6-1.Dir|
|000001a0| 65 63 74 20 56 61 72 69 | 61 74 69 6f 6e 0f 0d 0a |ect Vari|ation...|
|000001b0| 00 10 33 2d 36 2d 31 0e | 73 33 2d 36 2d 32 0e 44 |..3-6-1.|s3-6-2.D|
|000001c0| 69 72 65 63 74 20 56 61 | 72 69 61 74 69 6f 6e 20 |irect Va|riation |
|000001d0| 61 73 20 11 33 6e 11 31 | 74 68 20 50 6f 77 65 72 |as .3n.1|th Power|
|000001e0| 0f 0d 0a 00 10 33 2d 36 | 2d 31 0e 73 33 2d 36 2d |.....3-6|-1.s3-6-|
|000001f0| 31 0e 44 69 72 65 63 74 | 6c 79 20 50 72 6f 70 6f |1.Direct|ly Propo|
|00000200| 72 74 69 6f 6e 61 6c 0f | 0d 0a 00 10 33 2d 36 2d |rtional.|....3-6-|
|00000210| 31 0e 73 33 2d 36 2d 32 | 0e 44 69 72 65 63 74 6c |1.s3-6-2|.Directl|
|00000220| 79 20 50 72 6f 70 6f 72 | 74 69 6f 6e 61 6c 20 61 |y Propor|tional a|
|00000230| 73 20 11 33 6e 11 31 74 | 68 20 50 6f 77 65 72 0f |s .3n.1t|h Power.|
|00000240| 0d 0a 00 10 33 2d 33 2d | 31 0e 73 33 2d 33 2d 32 |....3-3-|1.s3-3-2|
|00000250| 0e 44 69 76 69 73 69 6f | 6e 20 41 6c 67 6f 72 69 |.Divisio|n Algori|
|00000260| 74 68 6d 0f 0d 0a 00 10 | 33 2d 33 2d 31 0e 73 33 |thm.....|3-3-1.s3|
|00000270| 2d 33 2d 34 0e 46 61 63 | 74 6f 72 20 54 68 65 6f |-3-4.Fac|tor Theo|
|00000280| 72 65 6d 0f 0d 0a 00 10 | 33 2d 35 2d 31 0e 73 33 |rem.....|3-5-1.s3|
|00000290| 2d 35 2d 34 0e 46 61 63 | 74 6f 72 73 20 6f 66 20 |-5-4.Fac|tors of |
|000002a0| 61 20 50 6f 6c 79 6e 6f | 6d 69 61 6c 0f 0d 0a 00 |a Polyno|mial....|
|000002b0| 10 33 2d 32 2d 31 0e 73 | 33 2d 32 2d 31 0e 47 72 |.3-2-1.s|3-2-1.Gr|
|000002c0| 61 70 68 73 20 6f 66 20 | 50 6f 6c 79 6e 6f 6d 69 |aphs of |Polynomi|
|000002d0| 61 6c 20 46 75 6e 63 74 | 69 6f 6e 73 20 6f 66 20 |al Funct|ions of |
|000002e0| 48 69 67 68 65 72 20 44 | 65 67 72 65 65 0f 0d 0a |Higher D|egree...|
|000002f0| 00 10 33 2d 33 2d 31 0e | 73 33 2d 33 2d 32 0e 49 |..3-3-1.|s3-3-2.I|
|00000300| 6d 70 72 6f 70 65 72 20 | 52 61 74 69 6f 6e 61 6c |mproper |Rational|
|00000310| 20 45 78 70 72 65 73 73 | 69 6f 6e 0f 0d 0a 00 10 | Express|ion.....|
|00000320| 33 2d 32 2d 31 0e 73 33 | 2d 32 2d 34 0e 49 6e 74 |3-2-1.s3|-2-4.Int|
|00000330| 65 72 6d 65 64 69 61 74 | 65 20 56 61 6c 75 65 20 |ermediat|e Value |
|00000340| 54 68 65 6f 72 65 6d 0f | 0d 0a 00 10 33 2d 36 2d |Theorem.|....3-6-|
|00000350| 31 0e 73 33 2d 36 2d 33 | 0e 49 6e 76 65 72 73 65 |1.s3-6-3|.Inverse|
|00000360| 20 56 61 72 69 61 74 69 | 6f 6e 0f 0d 0a 00 10 33 | Variati|on.....3|
|00000370| 2d 36 2d 31 0e 73 33 2d | 36 2d 33 0e 49 6e 76 65 |-6-1.s3-|6-3.Inve|
|00000380| 72 73 65 6c 79 20 50 72 | 6f 70 6f 72 74 69 6f 6e |rsely Pr|oportion|
|00000390| 61 6c 0f 0d 0a 00 10 33 | 2d 35 2d 31 0e 73 33 2d |al.....3|-5-1.s3-|
|000003a0| 35 2d 34 0e 49 72 72 65 | 64 75 63 69 62 6c 65 20 |5-4.Irre|ducible |
|000003b0| 4f 76 65 72 20 74 68 65 | 20 52 65 61 6c 73 0f 0d |Over the| Reals..|
|000003c0| 0a 00 10 33 2d 36 2d 31 | 0e 73 33 2d 36 2d 34 0e |...3-6-1|.s3-6-4.|
|000003d0| 4a 6f 69 6e 74 20 56 61 | 72 69 61 74 69 6f 6e 0f |Joint Va|riation.|
|000003e0| 0d 0a 00 10 33 2d 36 2d | 31 0e 73 33 2d 36 2d 34 |....3-6-|1.s3-6-4|
|000003f0| 0e 4a 6f 69 6e 74 6c 79 | 20 50 72 6f 70 6f 72 74 |.Jointly| Proport|
|00000400| 69 6f 6e 61 6c 0f 0d 0a | 00 10 33 2d 32 2d 31 0e |ional...|..3-2-1.|
|00000410| 73 33 2d 32 2d 32 0e 4c | 65 61 64 69 6e 67 20 43 |s3-2-2.L|eading C|
|00000420| 6f 65 66 66 69 63 69 65 | 6e 74 20 54 65 73 74 0f |oefficie|nt Test.|
|00000430| 0d 0a 00 10 33 2d 35 2d | 31 0e 73 33 2d 35 2d 32 |....3-5-|1.s3-5-2|
|00000440| 0e 4c 69 6e 65 61 72 20 | 46 61 63 74 6f 72 69 7a |.Linear |Factoriz|
|00000450| 61 74 69 6f 6e 20 54 68 | 65 6f 72 65 6d 0f 0d 0a |ation Th|eorem...|
|00000460| 00 10 33 2d 31 2d 31 0e | 73 33 2d 31 2d 31 0e 4c |..3-1-1.|s3-1-1.L|
|00000470| 69 6e 65 61 72 20 46 75 | 6e 63 74 69 6f 6e 0f 0d |inear Fu|nction..|
|00000480| 0a 00 10 33 2d 33 2d 31 | 0e 73 33 2d 33 2d 31 0e |...3-3-1|.s3-3-1.|
|00000490| 4c 6f 6e 67 20 44 69 76 | 69 73 69 6f 6e 20 6f 66 |Long Div|ision of|
|000004a0| 20 50 6f 6c 79 6e 6f 6d | 69 61 6c 73 0f 0d 0a 00 | Polynom|ials....|
|000004b0| 10 33 2d 34 2d 31 0e 73 | 33 2d 34 2d 33 0e 4c 6f |.3-4-1.s|3-4-3.Lo|
|000004c0| 77 65 72 20 42 6f 75 6e | 64 20 66 6f 72 20 74 68 |wer Boun|d for th|
|000004d0| 65 20 5a 65 72 6f 73 20 | 6f 66 20 61 20 50 6f 6c |e Zeros |of a Pol|
|000004e0| 79 6e 6f 6d 69 61 6c 0f | 0d 0a 00 10 33 2d 36 2d |ynomial.|....3-6-|
|000004f0| 31 0e 73 33 2d 36 2d 31 | 0e 4d 61 74 68 65 6d 61 |1.s3-6-1|.Mathema|
|00000500| 74 69 63 61 6c 20 4d 6f | 64 65 6c 73 0f 0d 0a 00 |tical Mo|dels....|
|00000510| 10 33 2d 31 2d 31 0e 73 | 33 2d 31 2d 35 0e 4d 61 |.3-1-1.s|3-1-5.Ma|
|00000520| 78 69 6d 75 6d 20 6f 72 | 20 4d 69 6e 69 6d 75 6d |ximum or| Minimum|
|00000530| 20 56 61 6c 75 65 20 6f | 66 20 61 20 51 75 61 64 | Value o|f a Quad|
|00000540| 72 61 74 69 63 20 46 75 | 6e 63 74 69 6f 6e 0f 0d |ratic Fu|nction..|
|00000550| 0a 00 10 33 2d 31 2d 31 | 0e 73 33 2d 31 2d 32 0e |...3-1-1|.s3-1-2.|
|00000560| 50 61 72 61 62 6f 6c 61 | 0f 0d 0a 00 10 33 2d 31 |Parabola|.....3-1|
|00000570| 2d 31 0e 73 33 2d 31 2d | 31 0e 50 6f 6c 79 6e 6f |-1.s3-1-|1.Polyno|
|00000580| 6d 69 61 6c 20 46 75 6e | 63 74 69 6f 6e 20 6f 66 |mial Fun|ction of|
|00000590| 20 11 33 78 20 11 31 57 | 69 74 68 20 44 65 67 72 | .3x .1W|ith Degr|
|000005a0| 65 65 20 11 33 6e 11 31 | 0f 0d 0a 00 10 33 2d 33 |ee .3n.1|.....3-3|
|000005b0| 2d 31 0e 73 33 2d 33 2d | 32 0e 50 72 6f 70 65 72 |-1.s3-3-|2.Proper|
|000005c0| 20 52 61 74 69 6f 6e 61 | 6c 20 45 78 70 72 65 73 | Rationa|l Expres|
|000005d0| 73 69 6f 6e 0f 0d 0a 00 | 10 33 2d 31 2d 31 0e 73 |sion....|.3-1-1.s|
|000005e0| 33 2d 31 2d 32 0e 51 75 | 61 64 72 61 74 69 63 20 |3-1-2.Qu|adratic |
|000005f0| 46 75 6e 63 74 69 6f 6e | 0f 0d 0a 00 10 33 2d 34 |Function|.....3-4|
|00000600| 2d 31 0e 73 33 2d 34 2d | 32 0e 52 61 74 69 6f 6e |-1.s3-4-|2.Ration|
|00000610| 61 6c 20 5a 65 72 6f 20 | 54 65 73 74 0f 0d 0a 00 |al Zero |Test....|
|00000620| 10 33 2d 32 2d 31 0e 73 | 33 2d 32 2d 33 0e 52 65 |.3-2-1.s|3-2-3.Re|
|00000630| 61 6c 20 5a 65 72 6f 73 | 20 6f 66 20 50 6f 6c 79 |al Zeros| of Poly|
|00000640| 6e 6f 6d 69 61 6c 20 46 | 75 6e 63 74 69 6f 6e 73 |nomial F|unctions|
|00000650| 0f 0d 0a 00 10 33 2d 33 | 2d 31 0e 73 33 2d 33 2d |.....3-3|-1.s3-3-|
|00000660| 34 0e 52 65 6d 61 69 6e | 64 65 72 20 54 68 65 6f |4.Remain|der Theo|
|00000670| 72 65 6d 0f 0d 0a 00 10 | 33 2d 32 2d 31 0e 73 33 |rem.....|3-2-1.s3|
|00000680| 2d 32 2d 31 0e 53 6d 6f | 6f 74 68 0f 0d 0a 00 10 |-2-1.Smo|oth.....|
|00000690| 33 2d 31 2d 31 0e 73 33 | 2d 31 2d 34 0e 53 74 61 |3-1-1.s3|-1-4.Sta|
|000006a0| 6e 64 61 72 64 20 46 6f | 72 6d 20 6f 66 20 61 20 |ndard Fo|rm of a |
|000006b0| 51 75 61 64 72 61 74 69 | 63 20 46 75 6e 63 74 69 |Quadrati|c Functi|
|000006c0| 6f 6e 0f 0d 0a 00 10 33 | 2d 33 2d 31 0e 73 33 2d |on.....3|-3-1.s3-|
|000006d0| 33 2d 33 0e 53 79 6e 74 | 68 65 74 69 63 20 44 69 |3-3.Synt|hetic Di|
|000006e0| 76 69 73 69 6f 6e 0f 0d | 0a 00 10 33 2d 35 2d 31 |vision..|...3-5-1|
|000006f0| 0e 73 33 2d 35 2d 31 0e | 54 68 65 20 46 75 6e 64 |.s3-5-1.|The Fund|
|00000700| 61 6d 65 6e 74 61 6c 20 | 54 68 65 6f 72 65 6d 20 |amental |Theorem |
|00000710| 6f 66 20 41 6c 67 65 62 | 72 61 0f 0d 0a 00 10 33 |of Algeb|ra.....3|
|00000720| 2d 34 2d 31 0e 73 33 2d | 34 2d 33 0e 55 70 70 65 |-4-1.s3-|4-3.Uppe|
|00000730| 72 20 42 6f 75 6e 64 20 | 66 6f 72 20 74 68 65 20 |r Bound |for the |
|00000740| 5a 65 72 6f 73 20 6f 66 | 20 61 20 50 6f 6c 79 6e |Zeros of| a Polyn|
|00000750| 6f 6d 69 61 6c 0f 0d 0a | 00 10 33 2d 36 2d 31 0e |omial...|..3-6-1.|
|00000760| 73 33 2d 36 2d 31 0e 56 | 61 72 69 65 73 20 44 69 |s3-6-1.V|aries Di|
|00000770| 72 65 63 74 6c 79 0f 0d | 0a 00 10 33 2d 36 2d 31 |rectly..|...3-6-1|
|00000780| 0e 73 33 2d 36 2d 32 0e | 56 61 72 69 65 73 20 44 |.s3-6-2.|Varies D|
|00000790| 69 72 65 63 74 6c 79 20 | 61 73 20 11 33 6e 11 31 |irectly |as .3n.1|
|000007a0| 74 68 20 50 6f 77 65 72 | 0f 0d 0a 00 10 33 2d 36 |th Power|.....3-6|
|000007b0| 2d 31 0e 73 33 2d 36 2d | 33 0e 56 61 72 69 65 73 |-1.s3-6-|3.Varies|
|000007c0| 20 49 6e 76 65 72 73 65 | 6c 79 0f 0d 0a 00 10 33 | Inverse|ly.....3|
|000007d0| 2d 36 2d 31 0e 73 33 2d | 36 2d 33 0e 56 61 72 69 |-6-1.s3-|6-3.Vari|
|000007e0| 65 73 20 49 6e 76 65 72 | 73 65 6c 79 20 61 73 20 |es Inver|sely as |
|000007f0| 11 33 6e 11 31 74 68 20 | 50 6f 77 65 72 0f 0d 0a |.3n.1th |Power...|
|00000800| 00 10 33 2d 36 2d 31 0e | 73 33 2d 36 2d 34 0e 56 |..3-6-1.|s3-6-4.V|
|00000810| 61 72 69 65 73 20 4a 6f | 69 6e 74 6c 79 0f 0d 0a |aries Jo|intly...|
|00000820| 00 10 33 2d 31 2d 31 0e | 73 33 2d 31 2d 33 0e 56 |..3-1-1.|s3-1-3.V|
|00000830| 65 72 74 65 78 20 6f 66 | 20 61 20 50 61 72 61 62 |ertex of| a Parab|
|00000840| 6f 6c 61 0f 0d 0b 00 26 | 00 00 00 21 08 00 00 4d |ola....&|...!...M|
|00000850| 16 00 00 10 00 00 00 00 | 00 00 00 4d 41 49 4e 00 |........|...MAIN.|
+--------+-------------------------+-------------------------+--------+--------+